Package index
-
ace_cor() - Calculates ace based transformations and correlation, handling missing values and factors.
-
add_nobs_to_pairwise() - Adds number of observations column to pairwise tibble
-
as.matrix(<pairwise>) - Converts a pairwise to a symmetric matrix. Uses the first entry for each (x,y) pair.
-
pair_ace() - Alternating conditional expectations correlation
-
pair_cancor() - Canonical correlation
-
pair_chi() - Pearson's Contingency Coefficient for association between factors.
-
pair_control() - Default scores calculated by
pairwise_scores
-
pair_cor() - Pearson, Spearman or Kendall correlation
-
pair_dcor() - Distance correlation
-
pair_gkGamma() - Goodman Kruskal's Gamma for association between ordinal factors.
-
pair_gkTau() - Goodman Kruskal's Tau for association between ordinal factors.
-
pair_kendall() - Kendall's correlation
-
pair_methods - Pairwise score functions available in the package
-
pair_mine() - MINE family values
-
pair_nmi() - Normalized mutual information
-
pair_polychor() - Polychoric correlation
-
pair_polyserial() - Polyserial correlation
-
pair_scagnostics() - Graph-theoretic scagnostics values
-
pair_spearman() - Spearman correlation
-
pair_tauA() - Kendall's tau A for association between ordinal factors.
-
pair_tauB() - Kendall's tau B for association between ordinal factors.
-
pair_tauC() - Stuarts's tau C for association between ordinal factors.
-
pair_tauW() - Kendall's W for association between ordinal factors.
-
pair_uncertainty() - Uncertainty coefficient for association between factors.
-
pairwise()as.pairwise() - A generic function to create a data structure for summarising variable pairs in a dataset
-
pairwise_by() - Constructs a pairwise result for each level of a by variable.
-
pairwise_multi() - Calculates multiple scores
-
pairwise_scores() - Calculates scores or conditional scores for a dataset
-
plot(<pairwise>) - Plot method for class
pairwise.
-
plot_pairwise() - Pairwise plot in a matrix layout
-
plot_pairwise_linear() - Pairwise plot in a linear layout