Package index
-
ace_cor()
- Calculates ace based transformations and correlation, handling missing values and factors.
-
as.matrix(<pairwise>)
- Converts a pairwise to a symmetric matrix. Uses the first entry for each (x,y) pair.
-
pair_ace()
- Alternating conditional expectations correlation
-
pair_cancor()
- Canonical correlation
-
pair_chi()
- Pearson's Contingency Coefficient for association between factors.
-
pair_control()
- Default scores calculated by
pairwise_scores
-
pair_cor()
- Pearson, Spearman or Kendall correlation
-
pair_dcor()
- Distance correlation
-
pair_gkGamma()
- Goodman Kruskal's Gamma for association between ordinal factors.
-
pair_gkTau()
- Goodman Kruskal's Tau for association between ordinal factors.
-
pair_methods
- Pairwise score functions available in the package
-
pair_mine()
- MINE family values
-
pair_nmi()
- Normalized mutual information
-
pair_polychor()
- Polychoric correlation
-
pair_polyserial()
- Polyserial correlation
-
pair_scagnostics()
- Graph-theoretic scagnostics values
-
pair_tauA()
- Kendall's tau A for association between ordinal factors.
-
pair_tauB()
- Kendall's tau B for association between ordinal factors.
-
pair_tauC()
- Stuarts's tau C for association between ordinal factors.
-
pair_tauW()
- Kendall's W for association between ordinal factors.
-
pair_uncertainty()
- Uncertainty coefficient for association between factors.
-
pairwise()
as.pairwise()
- A generic function to create a data structure for every variable pair in a dataset
-
pairwise_by()
- Constructs a pairwise result for each level of a by variable.
-
pairwise_multi()
- Calculates multiple scores
-
pairwise_scores()
- Calculates scores or conditional scores for a dataset
-
plot(<pairwise>)
- Plot method for class
pairwise
.
-
plot_pairwise()
- Pairwise plot in a matrix layout
-
plot_pairwise_linear()
- Pairwise plot in a linear layout