Calculates the maximal correlation coefficient from alternating conditional expectations algorithm for every variable pair in a dataset.
Value
A tibble of class pairwise
with a maximal correlation from the alternating conditional expectations
algorithm for every variable pair
Details
The maximal correlation is calculated using alternating conditional expectations
algorithm which find the transformations of variables such that the squared correlation
is maximised. The ace
function from acepack
package is used for the
calculation.
References
Breiman, Leo, and Jerome H. Friedman. "Estimating optimal transformations for multiple regression and correlation." Journal of the American statistical Association 80.391 (1985): 580-598.
Examples
pair_ace(iris)
#> # A tibble: 10 × 6
#> x y score group value pair_type
#> <chr> <chr> <chr> <chr> <dbl> <chr>
#> 1 Petal.Length Sepal.Length ace all 0.913 nn
#> 2 Petal.Width Sepal.Length ace all 0.865 nn
#> 3 Sepal.Length Sepal.Width ace all 0.584 nn
#> 4 Petal.Length Sepal.Width ace all 0.706 nn
#> 5 Petal.Width Sepal.Width ace all 0.731 nn
#> 6 Petal.Length Petal.Width ace all 0.989 nn
#> 7 Sepal.Length Species ace all 0.838 fn
#> 8 Sepal.Width Species ace all 0.679 fn
#> 9 Petal.Length Species ace all 0.994 fn
#> 10 Petal.Width Species ace all 0.994 fn