Calculates the maximal correlation coefficient from alternating conditional expectations algorithm for every variable pair in a dataset.
Value
A tibble of class pairwise with a maximal correlation  from the alternating conditional expectations
algorithm for every variable pair
Details
The maximal correlation is calculated using alternating conditional expectations
algorithm which find the transformations of variables such that the squared correlation
is maximised. The ace function from acepack package is used for the
calculation.
References
Breiman, Leo, and Jerome H. Friedman. "Estimating optimal transformations for multiple regression and correlation." Journal of the American statistical Association 80.391 (1985): 580-598.
Examples
pair_ace(iris)
#> # A tibble: 10 × 6
#>    x            y            score group value pair_type
#>    <chr>        <chr>        <chr> <chr> <dbl> <chr>    
#>  1 Petal.Length Sepal.Length ace   all   0.913 nn       
#>  2 Petal.Width  Sepal.Length ace   all   0.865 nn       
#>  3 Sepal.Length Sepal.Width  ace   all   0.584 nn       
#>  4 Petal.Length Sepal.Width  ace   all   0.706 nn       
#>  5 Petal.Width  Sepal.Width  ace   all   0.731 nn       
#>  6 Petal.Length Petal.Width  ace   all   0.989 nn       
#>  7 Sepal.Length Species      ace   all   0.838 fn       
#>  8 Sepal.Width  Species      ace   all   0.679 fn       
#>  9 Petal.Length Species      ace   all   0.994 fn       
#> 10 Petal.Width  Species      ace   all   0.994 fn