A generic function to create a data structure for summarising variable pairs in a dataset
Source:R/pairwise.R
pairwise.Rd
Creates a data structure for every variable pair in a dataset.
Usage
pairwise(x, score = NA_character_, pair_type = NA_character_)
# S3 method for class 'matrix'
pairwise(x, score = NA_character_, pair_type = NA_character_)
# S3 method for class 'data.frame'
pairwise(x, score = NA_character_, pair_type = NA_character_)
# S3 method for class 'easycorrelation'
pairwise(x, score = NA_character_, pair_type = NA_character_)
as.pairwise(x, score = NA_character_, pair_type = NA_character_)
Value
A tbl_df of class pairwise
for pairs of variables with a column value
for the score value,
score
for a type of association value and pair_type
for the type of variable pair.
Details
The pairwise
class has columns x and y for (ordered pairs) of variables, where x < y.
The column score has the name of the summary measure used for the two variables,
and the column value has the associated value.
The group column defaults to "all", meaning summary measures apply to the complete dataset,
otherwise it describes a subset of the data.
The functions pair_*
calculate pairwise tibbles for the summary measure named by *
, eg pair_cor()
, pair_cancor()
.
The functions pairwise_scores()
and pairwise_by()
calculate pairwise tibbles for levels of a grouping variable.
The function pairwise_multi()
calculates a pairwise_tibble for multiple named scores.
The pairwise tibble has at most one row for each combination of x, y, score and group.
This is checked prior to plotting by plot.pairwise
.
Note that the pair_type column is included for information purposes, but it is not currently used by plot.pairwise
.
Methods (by class)
pairwise(matrix)
: pairwise methodpairwise(data.frame)
: pairwise methodpairwise(easycorrelation)
: pairwise method
Examples
pairwise(cor(iris[,1:4]), score="pearson")
#> # A tibble: 6 × 6
#> x y score group value pair_type
#> <chr> <chr> <chr> <chr> <dbl> <chr>
#> 1 Petal.Length Sepal.Length pearson all 0.872 NA
#> 2 Petal.Width Sepal.Length pearson all 0.818 NA
#> 3 Sepal.Length Sepal.Width pearson all -0.118 NA
#> 4 Petal.Length Sepal.Width pearson all -0.428 NA
#> 5 Petal.Width Sepal.Width pearson all -0.366 NA
#> 6 Petal.Length Petal.Width pearson all 0.963 NA
pairwise(iris)
#> # A tibble: 10 × 6
#> x y score group value pair_type
#> <chr> <chr> <chr> <chr> <dbl> <chr>
#> 1 Petal.Length Sepal.Length NA all NA nn
#> 2 Petal.Width Sepal.Length NA all NA nn
#> 3 Sepal.Length Sepal.Width NA all NA nn
#> 4 Petal.Length Sepal.Width NA all NA nn
#> 5 Petal.Width Sepal.Width NA all NA nn
#> 6 Petal.Length Petal.Width NA all NA nn
#> 7 Sepal.Length Species NA all NA fn
#> 8 Sepal.Width Species NA all NA fn
#> 9 Petal.Length Species NA all NA fn
#> 10 Petal.Width Species NA all NA fn
pair_cor(iris)
#> # A tibble: 6 × 6
#> x y score group value pair_type
#> <chr> <chr> <chr> <chr> <dbl> <chr>
#> 1 Petal.Length Sepal.Length pearson all 0.872 nn
#> 2 Petal.Width Sepal.Length pearson all 0.818 nn
#> 3 Sepal.Length Sepal.Width pearson all -0.118 nn
#> 4 Petal.Length Sepal.Width pearson all -0.428 nn
#> 5 Petal.Width Sepal.Width pearson all -0.366 nn
#> 6 Petal.Length Petal.Width pearson all 0.963 nn
pair_cancor(iris)
#> # A tibble: 10 × 6
#> x y score group value pair_type
#> <chr> <chr> <chr> <chr> <dbl> <chr>
#> 1 Petal.Length Sepal.Length cancor all 0.872 nn
#> 2 Petal.Width Sepal.Length cancor all 0.818 nn
#> 3 Sepal.Length Sepal.Width cancor all 0.118 nn
#> 4 Petal.Length Sepal.Width cancor all 0.428 nn
#> 5 Petal.Width Sepal.Width cancor all 0.366 nn
#> 6 Petal.Length Petal.Width cancor all 0.963 nn
#> 7 Sepal.Length Species cancor all 0.787 fn
#> 8 Sepal.Width Species cancor all 0.633 fn
#> 9 Petal.Length Species cancor all 0.970 fn
#> 10 Petal.Width Species cancor all 0.964 fn
pairwise_scores(iris, by="Species")
#> # A tibble: 24 × 6
#> x y score group value pair_type
#> <chr> <chr> <chr> <fct> <dbl> <chr>
#> 1 Petal.Length Sepal.Length pearson setosa 0.267 nn
#> 2 Petal.Width Sepal.Length pearson setosa 0.278 nn
#> 3 Sepal.Length Sepal.Width pearson setosa 0.743 nn
#> 4 Petal.Length Sepal.Width pearson setosa 0.178 nn
#> 5 Petal.Width Sepal.Width pearson setosa 0.233 nn
#> 6 Petal.Length Petal.Width pearson setosa 0.332 nn
#> 7 Petal.Length Sepal.Length pearson versicolor 0.754 nn
#> 8 Petal.Width Sepal.Length pearson versicolor 0.546 nn
#> 9 Sepal.Length Sepal.Width pearson versicolor 0.526 nn
#> 10 Petal.Length Sepal.Width pearson versicolor 0.561 nn
#> # ℹ 14 more rows
pairwise_multi(iris)
#> # A tibble: 54 × 6
#> x y score group value pair_type
#> <chr> <chr> <chr> <chr> <dbl> <chr>
#> 1 Petal.Length Petal.Width pearson all 0.963 nn
#> 2 Petal.Length Petal.Width spearman all 0.938 nn
#> 3 Petal.Length Petal.Width dcor all 0.974 nn
#> 4 Petal.Length Petal.Width MIC all 0.918 nn
#> 5 Petal.Length Petal.Width ace all 0.989 nn
#> 6 Petal.Length Petal.Width cancor all 0.963 nn
#> 7 Petal.Length Petal.Width nmi all 0.835 nn
#> 8 Petal.Length Sepal.Length pearson all 0.872 nn
#> 9 Petal.Length Sepal.Length spearman all 0.882 nn
#> 10 Petal.Length Sepal.Length dcor all 0.859 nn
#> # ℹ 44 more rows