Calculates one of either pearson, spearman or kendall correlation for every numeric variable pair in a dataset.
Arguments
- d
A dataframe
- method
A character string for the correlation coefficient to be calculated. Either "pearson" (default), "spearman", or "kendall". If the value is "all", then all three correlations are calculated.
- handle.na
If TRUE uses pairwise complete observations to calculate correlation coefficient, otherwise NAs not handled.
- ...
other arguments
Value
A tibble of class pairwise
with calculated association value for every numeric variable pair,
or NULL if there are not at least two numeric variables
See also
See pair_methods
for other score options.
Examples
pair_cor(iris)
#> # A tibble: 6 × 6
#> x y score group value pair_type
#> <chr> <chr> <chr> <chr> <dbl> <chr>
#> 1 Petal.Length Sepal.Length pearson all 0.872 nn
#> 2 Petal.Width Sepal.Length pearson all 0.818 nn
#> 3 Sepal.Length Sepal.Width pearson all -0.118 nn
#> 4 Petal.Length Sepal.Width pearson all -0.428 nn
#> 5 Petal.Width Sepal.Width pearson all -0.366 nn
#> 6 Petal.Length Petal.Width pearson all 0.963 nn
pair_cor(iris, method="kendall")
#> # A tibble: 6 × 6
#> x y score group value pair_type
#> <chr> <chr> <chr> <chr> <dbl> <chr>
#> 1 Petal.Length Sepal.Length kendall all 0.719 nn
#> 2 Petal.Width Sepal.Length kendall all 0.655 nn
#> 3 Sepal.Length Sepal.Width kendall all -0.0770 nn
#> 4 Petal.Length Sepal.Width kendall all -0.186 nn
#> 5 Petal.Width Sepal.Width kendall all -0.157 nn
#> 6 Petal.Length Petal.Width kendall all 0.807 nn
pair_cor(iris, method="spearman")
#> # A tibble: 6 × 6
#> x y score group value pair_type
#> <chr> <chr> <chr> <chr> <dbl> <chr>
#> 1 Petal.Length Sepal.Length spearman all 0.882 nn
#> 2 Petal.Width Sepal.Length spearman all 0.834 nn
#> 3 Sepal.Length Sepal.Width spearman all -0.167 nn
#> 4 Petal.Length Sepal.Width spearman all -0.310 nn
#> 5 Petal.Width Sepal.Width spearman all -0.289 nn
#> 6 Petal.Length Petal.Width spearman all 0.938 nn
pair_cor(iris, method="all")
#> # A tibble: 18 × 6
#> x y score group value pair_type
#> <chr> <chr> <chr> <chr> <dbl> <chr>
#> 1 Petal.Length Sepal.Length pearson all 0.872 nn
#> 2 Petal.Width Sepal.Length pearson all 0.818 nn
#> 3 Sepal.Length Sepal.Width pearson all -0.118 nn
#> 4 Petal.Length Sepal.Width pearson all -0.428 nn
#> 5 Petal.Width Sepal.Width pearson all -0.366 nn
#> 6 Petal.Length Petal.Width pearson all 0.963 nn
#> 7 Petal.Length Sepal.Length spearman all 0.882 nn
#> 8 Petal.Width Sepal.Length spearman all 0.834 nn
#> 9 Sepal.Length Sepal.Width spearman all -0.167 nn
#> 10 Petal.Length Sepal.Width spearman all -0.310 nn
#> 11 Petal.Width Sepal.Width spearman all -0.289 nn
#> 12 Petal.Length Petal.Width spearman all 0.938 nn
#> 13 Petal.Length Sepal.Length kendall all 0.719 nn
#> 14 Petal.Width Sepal.Length kendall all 0.655 nn
#> 15 Sepal.Length Sepal.Width kendall all -0.0770 nn
#> 16 Petal.Length Sepal.Width kendall all -0.186 nn
#> 17 Petal.Width Sepal.Width kendall all -0.157 nn
#> 18 Petal.Length Petal.Width kendall all 0.807 nn