Guided parallel coordinate plot.
guided_pcp.Rd
Draws a parallel coordinate plot, with an accompanying barchart showing an index (eg correlation, scagnostics) levels for each panel. An index legend is optional.
Usage
guided_pcp(data, edgew=NULL, path = NULL, pathw=NULL,zoom=NULL,pcpfn=pcp,
pcp.col = 1,lwd=0.5, panel.colors=NULL, pcp.mar=c(1.5,2,2,2), pcp.scale=TRUE,
bar.col=1:9,bar.axes=FALSE, bar.mar=NULL,bar.ylim=NULL, reorder.weights=TRUE,
layout.heights=NULL, layout.widths=c(10,1),
main=NULL,legend=FALSE,cex.legend = 1,legend.mar=c(1,4,1,1),...)
Arguments
- data
A data frame or matrix.
- edgew
Matrix (or vector) whose rows give index values for each pair of variables.
- path
an index vector specifying variable order, or a function. If a function,
find_path(edgew,path,...)
constructs the index vector.- pathw
Matrix (or vector) whose rows give index values for each adjacent pair of variables in path. Usually this argument is NULL and
pathw
is computed from thepath
andedgew
.- zoom
If provided, a numeric vector specifying a subsequence of path to display.
- pcpfn
Function to draw the parallel coordinates.
- pcp.col
Line colors.
- lwd
Line widths.
- panel.colors
Background panel colors, passed to the
pcpfn
- pcp.mar
Controls PCP margin size.
- pcp.scale
If TRUE, the variables will be scaled to 0-1 range, otherwise the data is not scaled.
- bar.col
Bar colors.
- bar.axes
Draw barplot axes, if TRUE.
- bar.mar
Controls barplot margin size.
- bar.ylim
Vertical limits of bar plot.
- reorder.weights
If TRUE, reorder barplot indices so large values are drawn at the bottom.
- layout.heights
Controls the layout.
- layout.widths
Controls the layout.
- main
Main title for PCP.
- legend
If TRUE, draws the barplot index legend.
- cex.legend
Controls legend text size.
- legend.mar
Legend margin size.
- ...
Optional arguments
References
see overview
Examples
require(PairViz)
data <- mtcars[,c(1,3:6)]
cols <- c("red","green")[mtcars[,9]+1 ] # transmission type, red=automatic
# add a correlation guide and find "better" hamiltonians...
# add a correlation guide...
corw <- dist2edge(as.dist(cor(data)))
edgew <- cbind(corw*(corw>0), corw*(corw<0))
# add a correlation guide to a PCP, positive cors shown in blue, negative in purple...
if (FALSE) {
dev.new(width=3,height=3)
par(cex.axis=.65)
guided_pcp(data,edgew, pcp.col=cols,
main="Correlation guided PCP",bar.col = c("blue","purple"))
dev.new(width=7,height=3)
par(cex.axis=.65)
guided_pcp(data,edgew, path=eulerian, pcp.col=cols,lwd=2,
main="Correlation guided Eulerian PCP",bar.col = c("blue","purple"),bar.axes=TRUE)
}
# Scagnostic guides are useful here- see the demos for more examples.