Utility functions to manipulate pairwise information.
pathweights.Rd
These functions perform calculations on edge matrices containing pairwise information.
Usage
path_weights(edgew, path, symmetric = TRUE,edge.index=edge_index(edgew),...)
path_cis(edgew, path,edge.index=edge_index(edgew),ci.pos=FALSE)
edge2dist(edgew, edge.index=edge_index(edgew))
dist2edge(d)
edge_index(x, order="default")
Arguments
- edgew
A Matrix (or vector) whose ith row (or element) has weights for pair indexed by pair in row i of edge.index. For
edge2dist
,edgew
should be a vector.- path
Vector of indices into rows of
edgew
.- symmetric
If
TRUE
edge weights are interpreted as symmetric.- edge.index
A 2-column matrix with each row giving indices for corresponding weight in
edgew
.- ci.pos
If TRUE, all CIs are mu(max) - mu(min), otherwise mu(right) - mu(left).
- d
A
dist
or matrx of distances.- order
If "low.order.first" or "scagnostics", lists lowest index pairs first, otherwise lists pairs starting with 1, then 2 etc.
- x
An edgew matrix or vector, or a positive integer.
- ...
Ignored
Details
path_weights
- Returns matrix of path weights so that the ith row of result contains weights for indices path[i], path[i+1]
path_cis
- Returns matrix of path confidence intervals so that the ith row of result contains intervals for mean-path[i] - mean-path[i+1]
edge2dist
- Returns a dist
,
containing elements of edgew
.
dist2edge
- Returns a vector of edge weights.
edge_index
-A generic function. Returns a 2-column matrix with one row for
each edge. Each row contains an index pair i,j. If order
is "low.order.first" or "scagnostics", lists lowest index pairs first - this is the default ordering for class scagdf
, otherwise lists pairs
starting with 1, then 2 etc
nnodes
- Here edgew
contains edge weights for a complete graph; returns the number of nodes in this complete graph.
References
see overview
Examples
require(PairViz)
s <- matrix(1:40,nrow=10,ncol=4)
edge2dist(s[,1])
#> 1 2 3 4
#> 2 1
#> 3 2 5
#> 4 3 6 8
#> 5 4 7 9 10
path_weights(s,1:4)
#> [,1] [,2] [,3] [,4]
#> [1,] 1 11 21 31
#> [2,] 5 15 25 35
#> [3,] 8 18 28 38
path_weights(s,eseq(5))
#> [,1] [,2] [,3] [,4]
#> [1,] 1 11 21 31
#> [2,] 5 15 25 35
#> [3,] 2 12 22 32
#> [4,] 3 13 23 33
#> [5,] 6 16 26 36
#> [6,] 7 17 27 37
#> [7,] 9 19 29 39
#> [8,] 8 18 28 38
#> [9,] 10 20 30 40
#> [10,] 4 14 24 34
fm1 <- aov(breaks ~ wool + tension, data = warpbreaks)
tuk <- TukeyHSD(fm1, "tension")[[1]]
# Here the first argument (weight matrix) can have number of columns
path_weights(tuk,c(1:3,1))
#> diff lwr upr p adj
#> M-L -10.000000 -19.35342 -0.6465793 0.033626219
#> H-M -4.722222 -14.07564 4.6311985 0.447421021
#> H-L -14.722222 -24.07564 -5.3688015 0.001121788
# Here the first argument (weight matrix) should have an odd number of columns-
# the first is the mean difference, other column pairs are endpoints of CIs
path_cis(tuk[,-4],c(1:3,1))
#> diff lwr upr
#> M-L -10.000000 -19.353421 -0.6465793
#> H-M -4.722222 -14.075643 4.6311985
#> L-H 14.722222 5.368801 24.0756429