Constructs tours of data space based on fits.
lofPath(
data,
fits,
length = 10,
reorder = TRUE,
conditionvars = NULL,
predictArgs = NULL,
response = NULL,
...
)
diffitsPath(
data,
fits,
length = 10,
reorder = TRUE,
conditionvars = NULL,
predictArgs = NULL,
...
)
hiresponsePath(
data,
response = NULL,
length = 10,
reorder = TRUE,
conditionvars = NULL,
...
)
loresponsePath(
data,
response = NULL,
length = 10,
reorder = TRUE,
conditionvars = NULL,
...
)
A dataframe
A model fit or list of fits
Path length, defaults to 10
If TRUE (default) uses DendSer to reorder the path dser
A vector of variable names. The returned tour is for this subset of variables.
Extra inputs to CVpredict
The name of the response variable
ignored
A dataframe with the path
lofPath()
: Constructs a tour of data space showing biggest absolute residuals from fits.
diffitsPath()
: Constructs a tour of data space showing biggest differences in fits.
hiresponsePath()
: Constructs a tour of data space showing high (numeric) response values
loresponsePath()
: Constructs a tour of data space showing low (numeric) response values
fit1 <- lm(mpg ~ wt+hp+am, data=mtcars)
fit2 <- lm(mpg ~ wt, data=mtcars)
lofPath(mtcars,fit1, response="mpg")
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
#> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
#> Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
#> AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
#> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
diffitsPath(mtcars,list(fit1,fit2))
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
#> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
#> Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
#> Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4