A predict generic function for condvis
CVpredict(
fit,
newdata,
...,
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL,
pinterval = NULL,
pinterval_level = 0.95
)
# S3 method for default
CVpredict(
fit,
newdata,
...,
ptype = "pred",
pthreshold = NULL,
pinterval = NULL,
pinterval_level = 0.95,
ylevels = NULL,
ptrans = NULL
)
# S3 method for lm
CVpredict(
fit,
newdata,
...,
ptype = "pred",
pthreshold = NULL,
pinterval = NULL,
pinterval_level = 0.95,
ylevels = NULL,
ptrans = NULL
)
# S3 method for glm
CVpredict(
fit,
...,
type = "response",
ptype = "pred",
pthreshold = NULL,
pinterval = NULL,
pinterval_level = 0.95,
ylevels = NULL,
ptrans = NULL
)
# S3 method for lda
CVpredict(
fit,
...,
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL
)
# S3 method for qda
CVpredict(
fit,
...,
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL
)
# S3 method for nnet
CVpredict(
fit,
...,
type = NULL,
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL
)
# S3 method for randomForest
CVpredict(
fit,
...,
type = NULL,
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL
)
# S3 method for ranger
CVpredict(
fit,
...,
type = NULL,
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL
)
# S3 method for rpart
CVpredict(
fit,
...,
type = NULL,
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL
)
# S3 method for tree
CVpredict(
fit,
...,
type = NULL,
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL
)
# S3 method for C5.0
CVpredict(
fit,
...,
type = NULL,
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL
)
# S3 method for svm
CVpredict(
fit,
...,
type = NULL,
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL
)
# S3 method for gbm
CVpredict(
fit,
...,
type = NULL,
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
n.trees = fit$n.trees,
ptrans = NULL
)
# S3 method for loess
CVpredict(fit, newdata = NULL, ...)
# S3 method for ksvm
CVpredict(
fit,
newdata,
...,
type = NULL,
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL
)
# S3 method for glmnet
CVpredict(
fit,
newdata,
...,
type = "response",
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL,
s = NULL,
makex = NULL
)
# S3 method for cv.glmnet
CVpredict(
fit,
newdata,
...,
type = "response",
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL,
makex = NULL
)
# S3 method for glmnet.formula
CVpredict(
fit,
newdata,
...,
type = "response",
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL,
s = NULL
)
# S3 method for cv.glmnet.formula
CVpredict(
fit,
newdata,
...,
type = "response",
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL
)
# S3 method for keras.engine.training.Model
CVpredict(
fit,
newdata,
...,
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL,
batch_size = 32,
response = NULL,
predictors = NULL
)
# S3 method for kde
CVpredict(fit, newdata = fit$x, ..., scale = TRUE)
# S3 method for densityMclust
CVpredict(
fit,
newdata = NULL,
...,
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL,
scale = TRUE
)
# S3 method for MclustDA
CVpredict(
fit,
newdata,
...,
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL
)
# S3 method for MclustDR
CVpredict(
fit,
newdata,
...,
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL
)
# S3 method for Mclust
CVpredict(
fit,
newdata,
...,
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL
)
# S3 method for train
CVpredict(
fit,
newdata,
...,
type = "response",
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL
)
# S3 method for bartMachine
CVpredict(
fit,
newdata,
...,
type = NULL,
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL
)
# S3 method for wbart
CVpredict(
fit,
newdata,
...,
type = NULL,
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL
)
# S3 method for lbart
CVpredict(
fit,
newdata,
...,
type = NULL,
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL
)
# S3 method for pbart
CVpredict(
fit,
newdata,
...,
type = NULL,
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL
)
# S3 method for bart
CVpredict(
fit,
newdata,
...,
type = NULL,
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL
)
# S3 method for model_fit
CVpredict(
fit,
...,
type = NULL,
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL,
pinterval = NULL,
pinterval_level = 0.95
)
# S3 method for WrappedModel
CVpredict(
fit,
newdata,
...,
type = NULL,
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL,
pinterval = NULL,
pinterval_level = 0.95
)
# S3 method for Learner
CVpredict(
fit,
newdata,
...,
type = NULL,
ptype = "pred",
pthreshold = NULL,
ylevels = NULL,
ptrans = NULL,
pinterval = NULL,
pinterval_level = 0.95
)
A fitted model
Where to calculate predictions.
extra arguments to predict
One of "pred","prob" or "probmatrix"
Used for calculating classes from probs, in the two class case
The levels of the response, when it is a factor
A function to apply to the result
NULL, "confidence" or "prediction". Only for lm, parsnip, mlr(regression, confidence only)
Defaults to 0.95
For some predict methods
Used by CVpredict.gbm, passed to predict
Used by CVpredict.glmnet and CVpredict.cv.glmnet, passed to predict
Used by CVpredict.glmnet and CVpredict.cv.glmnet. A function to construct xmatrix for predict.
Used by CVpredict.keras.engine.training.Model, passed to predict
Used by CVpredict.keras.engine.training.Model. Name of response (optional)
Used by CVpredict.keras.engine.training.Model. Name of predictors
Used by CVpredict for densities. If TRUE (default) rescales the conditional density to integrate to 1.
a vector of predictions, or a matrix when type is "probmatrix"
This is a wrapper for predict used by condvis. When the model response is numeric, the result is a vector of predictions. When the model response is a factor the result depends on the value of ptype. If ptype="pred", the result is a factor. If also threshold is numeric, it is used to threshold a numeric prediction to construct the factor when the factor has two levels. For ptype="prob", the result is a vector of probabilities for the last factor level. For ptype="probmatrix", the result is a matrix of probabilities for each factor level.
CVpredict(default)
: CVpredict method
CVpredict(lm)
: CVpredict method
CVpredict(glm)
: CVpredict method
CVpredict(lda)
: CVpredict method
CVpredict(qda)
: CVpredict method
CVpredict(nnet)
: CVpredict method
CVpredict(randomForest)
: CVpredict method
CVpredict(ranger)
: CVpredict method
CVpredict(rpart)
: CVpredict method
CVpredict(tree)
: CVpredict method
CVpredict(C5.0)
: CVpredict method
CVpredict(svm)
: CVpredict method
CVpredict(gbm)
: CVpredict method
CVpredict(loess)
: CVpredict method
CVpredict(ksvm)
: CVpredict method
CVpredict(glmnet)
: CVpredict method
CVpredict(cv.glmnet)
: CVpredict method
CVpredict(glmnet.formula)
: CVpredict method
CVpredict(cv.glmnet.formula)
: CVpredict method
CVpredict(keras.engine.training.Model)
: CVpredict method
CVpredict(kde)
: CVpredict method
CVpredict(densityMclust)
: CVpredict method
CVpredict(MclustDA)
: CVpredict method
CVpredict(MclustDR)
: CVpredict method
CVpredict(Mclust)
: CVpredict method
CVpredict(train)
: CVpredict method for caret
CVpredict(bartMachine)
: CVpredict method
CVpredict(wbart)
: CVpredict method
CVpredict(lbart)
: CVpredict method
CVpredict(pbart)
: CVpredict method
CVpredict(bart)
: CVpredict method
CVpredict(model_fit)
: CVpredict method for parsnip
CVpredict(WrappedModel)
: CVpredict method for mlr
CVpredict(Learner)
: CVpredict method for mlr3
#Fit a model.
f <- lm(Fertility~ ., data=swiss)
CVpredict(f)
#> Courtelary Delemont Franches-Mnt Moutier Neuveville Porrentruy
#> 74.61530 82.50994 85.91826 76.82039 64.70241 90.50011
#> Broye Glane Gruyere Sarine Veveyse Aigle
#> 79.69351 81.60056 81.33578 79.47931 83.63057 59.03302
#> Aubonne Avenches Cossonay Echallens Grandson Lausanne
#> 66.39675 66.02465 65.39121 73.38669 71.59419 55.49884
#> La Vallee Lavaux Morges Moudon Nyone Orbe
#> 50.73796 63.44690 62.16857 75.80325 61.59013 64.13413
#> Oron Payerne Paysd'enhaut Rolle Vevey Yverdon
#> 73.56152 72.51399 71.47848 61.97277 63.73674 72.42658
#> Conthey Entremont Herens Martigwy Monthey St Maurice
#> 76.25945 76.97478 78.56615 76.33212 83.30869 73.17632
#> Sierre Sion Boudry La Chauxdfnd Le Locle Neuchatel
#> 76.87869 70.95452 65.59572 72.04256 68.56686 53.51934
#> Val de Ruz ValdeTravers V. De Geneve Rive Droite Rive Gauche
#> 72.53541 73.05290 34.79763 54.36209 58.07426
#Fit a model with a factor response
swiss1 <- swiss
swiss1$Fertility <- cut(swiss$Fertility, c(0,80,100))
levels(swiss1$Fertility)<- c("lo", "hi")
f <- glm(Fertility~ ., data=swiss1, family="binomial")
CVpredict(f) # by default gives a factor
#> [1] lo hi hi lo lo hi lo hi hi hi hi lo lo lo lo lo lo lo lo lo lo lo lo lo lo
#> [26] lo lo lo lo lo lo lo lo lo hi lo lo lo lo lo lo lo lo lo lo lo lo
#> Levels: lo hi
CVpredict(f, ptype="prob") # gives prob of level hi
#> [1] 0.396514295 0.861764264 0.909279844 0.332544446 0.032936859 0.979777528
#> [7] 0.440886237 0.663091523 0.680884448 0.766680073 0.726807397 0.002254863
#> [13] 0.010054694 0.019461926 0.003390852 0.027195256 0.078436139 0.022608733
#> [19] 0.001026875 0.004316500 0.003832595 0.090358030 0.005694209 0.004003802
#> [25] 0.028947008 0.081614140 0.034337002 0.004890035 0.047863977 0.086947385
#> [31] 0.151574937 0.275104859 0.231597035 0.212834690 0.664406245 0.181141244
#> [37] 0.208021362 0.190369261 0.017460214 0.130143834 0.085070861 0.017571156
#> [43] 0.089999302 0.088208649 0.004325098 0.025922023 0.077848295
CVpredict(f, ptype="probmatrix") # gives prob of both levels
#> lo hi
#> [1,] 0.60348571 0.396514295
#> [2,] 0.13823574 0.861764264
#> [3,] 0.09072016 0.909279844
#> [4,] 0.66745555 0.332544446
#> [5,] 0.96706314 0.032936859
#> [6,] 0.02022247 0.979777528
#> [7,] 0.55911376 0.440886237
#> [8,] 0.33690848 0.663091523
#> [9,] 0.31911555 0.680884448
#> [10,] 0.23331993 0.766680073
#> [11,] 0.27319260 0.726807397
#> [12,] 0.99774514 0.002254863
#> [13,] 0.98994531 0.010054694
#> [14,] 0.98053807 0.019461926
#> [15,] 0.99660915 0.003390852
#> [16,] 0.97280474 0.027195256
#> [17,] 0.92156386 0.078436139
#> [18,] 0.97739127 0.022608733
#> [19,] 0.99897312 0.001026875
#> [20,] 0.99568350 0.004316500
#> [21,] 0.99616740 0.003832595
#> [22,] 0.90964197 0.090358030
#> [23,] 0.99430579 0.005694209
#> [24,] 0.99599620 0.004003802
#> [25,] 0.97105299 0.028947008
#> [26,] 0.91838586 0.081614140
#> [27,] 0.96566300 0.034337002
#> [28,] 0.99510997 0.004890035
#> [29,] 0.95213602 0.047863977
#> [30,] 0.91305261 0.086947385
#> [31,] 0.84842506 0.151574937
#> [32,] 0.72489514 0.275104859
#> [33,] 0.76840297 0.231597035
#> [34,] 0.78716531 0.212834690
#> [35,] 0.33559376 0.664406245
#> [36,] 0.81885876 0.181141244
#> [37,] 0.79197864 0.208021362
#> [38,] 0.80963074 0.190369261
#> [39,] 0.98253979 0.017460214
#> [40,] 0.86985617 0.130143834
#> [41,] 0.91492914 0.085070861
#> [42,] 0.98242884 0.017571156
#> [43,] 0.91000070 0.089999302
#> [44,] 0.91179135 0.088208649
#> [45,] 0.99567490 0.004325098
#> [46,] 0.97407798 0.025922023
#> [47,] 0.92215171 0.077848295